

Electrochemical sensors for atmospheric corrosion monitoring and materials testing

Fritz Friedersdorf Senior Technical Fellow AMPP Fellow

Issue and Objective

Atmospheric corrosion is a significant issue for transportation, infrastructure, and energy applications

There is a need to provide continuous environment and corrosion measurements for materials characterization and asset management

Electrochemical sensors and monitoring systems have been developed and standardized for atmospheric corrosion

Measurement Parameters for Atmospheric Corrosion

- Humidity
- Temperature
- Contaminant or salt loading
- Corrosion rates

Small and lightweight Periodic measurements and data storage Autonomous, battery powered operation

Atmospheric Corrosion Measurements

Measurements of conductance, self-corrosion, and galvanic corrosion are made using interdigitated electrodes (IDE)

Two electrode measurements

- Conductance and self corrosion impedance measurements using the same alloy or metal for each electrode
- Galvanic corrosion zero resistance ammeter (ZRA) measurements using dissimilar materials using

Measurement	Symbol	Range Min	Range Max	Units	Sensor Excitation
Air Temperature	T _a	-40	+85	°C	-
Relative Humidity	RH	0	100	%	-
Conductance (Low Freq)	GL	0.005	1	μS	20 mV _{pp} , 10 Hz
Conductance (High Freq)	G _H	5	10,000	μS	20 mV _{pp} , 25 kHz
Galvanic Corrosion	۱ _g	0.01	100	μΑ	ZRA
Free Corrosion	I _c	0.005	100	μΑ	20 mV _{pp} , 0.5 Hz

Corrosion

Self

Galvanic Corrosion

ZRA

Atmospheric Corrosion Measurements

- High frequency gold IDE two electrode measurement used to determine Gold solution resistance (conductance) $Z_{\omega \rightarrow \infty} = R_s$
- Low frequency two electrode self corrosion measurement for polarization resistance

$$Z_{\omega \to 0} = 2R_{\rm p} + R_{\rm s}$$

Self Corrosion Galvanic Corrosion

Two electrode equivalent circuit

Corrosion Rate

The self corrosion current can be convert to a corrosion rate using the Stern-Geary Equation

$$R_{\rm p} = \frac{(\Delta E)}{(\Delta I)_{\Delta E \to 0}} = \frac{\beta_a \beta_c}{2.3 I_{\rm corr} (\beta_a + \beta_c)} \quad \text{or} \quad \frac{\beta}{I_{\rm corr}} \quad \text{therefore} \quad I_{\rm corr} \propto \frac{1}{R_{\rm p}}$$

• Requires either Tafel slopes or empirically derived constants for the sensor alloy

The ZRA current measurement is a direct measure of galvanic corrosion rate

Mass loss and thickness loss can be determined using Faraday's Law and the corrosion rate

* Application of Stern-Geary and thickness loss calculations depend on mechanism of attack, and are not appropriate for localized corrosion

Example Data - Outdoor Exposure

Electrochemical measurements can be used to determine site severity

- Conductance and wet candle measurements at two marine sites 800 m apart Alloy corrosion rates can be compared under the same environmental conditions
- Aluminum alloy galvanic compatibility at a single test site

Corrosion of AA7075-T6

Chloride Deposition

AA7075-T6 Galvanic Couple

Alloys	Corr Ratio
CFRP/A286	5
CFRP/Ti64	13
A286/Ti64	3

Example Data - Laboratory Coating Test

Coating performance can be quantified throughout an exposure test

Summary

- Electrochemical sensors and measurement systems can be used for continuous monitoring of environment conditions and corrosion in laboratory tests, outdoor exposures, and on assets
- Site severity can be assessed with multiple environment and corrosion parameters
- Alloy and coating performance can be quantified continuously throughout a test or exposure

ANSI/NACE TM0416-2016

Test Method For Monitoring Atmospheric Corrosion Rate

TM21449 Continuous Measurements for Determination of Coating Protective Properties

AD HOC I-SC 07 Environment Spectra and Severity Classification

WIP 2012-01-17

Atmospheric Corrosion Monitoring Informational Report AIR6970

Sensors

Asset Tracking Systems

Environment Spectra

Booth 1718

Thank You

Fritz Friedersdorf <u>fritz.friedersdorf@lunalabs.us</u> 540.808.8947

