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ABSTRACT 

Time-based inspection and maintenance intervals are a conventional method of corrosion monitoring on 
aircraft. However, as corrosion processes do not necessarily occur in scheduled events, these 
conventional maintenance practices can lead to over- or under-estimation of costly inspections. A shift 
toward evidence-based and data driven predictive maintenance using a combination of on-asset 
monitoring devices and component-level models could improve efficiency and reduce total ownership 
costs. In particular, a “virtual sensor”, i.e., a trained model to predict the corrosion at a given location on 
the aircraft, can be leveraged to optimize the placement of physical real-time monitoring devices. This 
digital twin process can be applied to determine the corrosion susceptibility of a single aircraft, or to 
conduct a fleet-wide analysis. In this work, sensing device measurements deployed at varying locations 
will be used to demonstrate the applicability of severity tracking, through data-driven machine learning 
models.  In particular, models will be trained on environmental parameters and leveraged to predict 
current (corrosion rate).     

Key words: Galvanic corrosion, corrosion sensor, machine learning, CBM+, aircraft maintenance, 

INTRODUCTION 
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Material damage and loss can occur on metallic structures during ambient outdoor conditions through 
atmospheric corrosion, leading to high costs of maintenance and repair1.  The severity of corrosion is 
dependent on the material(s), the geometry, and the environment.  In particular, it is of interest to 
understand and classify environments based on their corrosivity for a given material configuration to 
inform and enhance maintenance practices2.  That is, having scheduled maintenance based on usage 
and estimated severity, in contrast to generalized maintenance and inspection intervals applied across 
all scenarios.  The former could save time, money, and resources by preventing excessive maintenance 
when it is not needed, such as in mild environments with low corrosive materials.  

To investigate and quantify the impact of the environment on corrosion severity, many researchers have 
deployed experimental mass loss coupons to various locations3–6.  Due to the discrete data pulls required 
for mass loss analysis, annual averages are often aggregated to determine severity.  In particular, this 
process has been leveraged to create international standards and government reports5,7–9.  Although 
these experiments have added tremendous value to the community through determining a relative 
environmental severity for a given location there exist inherent limitations of being costly from numerous 
required samples and analysis manhours, slow to receive meaningful data, and requiring a deployment 
footprint at the location of interest.  In addition, basing corrosion predictions on annual averages of 
environment and corrosion severity parameters may miss important seasonal events and diurnal cycles 
which are known to have an impact on corrosion rates10.  Recent advances with real-time monitoring 
device measurements overcome the sparce mass-loss datasets and need for annual averaging, but still 
require physical deployments at locations of interest11. 

Therefore, there exist a need for model which can be trained on existing experimental deployments of 
coupons but can extrapolate the respective corrosion severity to additional locations without any of the 
three limitations described above.  Finite element method (FEM) models have become popular to 
estimate corrosion severity, due to their fine spatial resolution and customizable geometries12–15.  
However, FEM models can be computational expensive and are built on fundamental physical equations, 
requiring some knowledge of the underlaying physical processes and mechanisms.  Conversely, machine 
learning (ML) models are data-driven and non-physics based, allowing rapid first approximations of 
systems prior to the mechanistic knowledge and deeper FEM analysis10,16.   

Such data-driven modeling efforts can be difficult, due to the large factorial of possible influencing 
features10.  In particular, in the context of atmospheric corrosion, there has been such debate around 
which environmental features to investigate, with focus on ozone3,17,18, UV4,18,19, 
contaminants/pollutants4,6,20,21, wind/wave4,18,21, relative humidity (RH)18–22 and temperature18,19,21,22, to 
name a few.  In general, it is agreed upon that there are two main influencing factors of a given location 
on the corrosion severity: the saltiness and the wetness.  Without either of these factors, a conducting 
electrolyte would not be feasible and atmospheric corrosion could not occur.    

As there has been no consensus on which environmental parameters may be most influential towards 
the saltiness and wetness of a location, and therefore, the corrosion severity, prior ML modeling efforts 
have been developed and applied with varying feature input parameters.  Although including every 
environmental feature may result in a comprehensive and robust model, many of the parameters have 
sparce records and may not be necessary to capture the relationship of the corrosion severity.  Prior 
atmospheric corrosion ML modeling reported in literature has either included a multitude of environmental 
parameters as-available18,23,24, or has focused on a select few parameters25,26.  There has yet to be a 
systematic study of a limited set of parameters to gauge their direct influence on predicting the corrosion 
severity.   

Therefore, the focus of this work will attempt to begin this systematic study, through the development and 
analysis of multiple models with varying feature input parameters.  In particular, the input features will 
range from broad to local environments, with the goal of predicting the corrosion severity to help inform 
and enhance maintenance practices.  

 
EXPERIMENTAL PROCEDURE 
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Real-Time Sensor Measurements in Monitoring Device 

Real-time corrosion and environment monitoring devices were leveraged in this work.  These devices 
consisted of interdigitated electrodes (IDE) for measuring galvanic corrosion, single-alloy free corrosion, 
and solution conductance along with relative humidity (RH) and temperature sensors (Figure 1). 

The IDE solution conductance sensor is comprised of two gold electrodes on an inert alumina 
substrate.  The solution conductance over the IDE was determined via an electrochemical impedance 
measurement made between the two electrodes at 25 kHz with an applied peak-to-peak voltage signal 
of 20 mV.  The measurement span of the solution conductance sensor was between 5 μS and 10,000 

μS.  The RH sensor has a range of 0% to 100% RH with an accuracy of ±2% RH.  The temperature 

sensor has an accuracy of ±0.2 °C within the relevant temperature range.  

The free corrosion IDE sensor consisted of AA7075-T6, while the galvanic corrosion IDE sensor 
consisted of AA7075-T6 coupled with A286.  The former will be the focus of the investigation in this work, 
with an electrochemical impedance spectroscopy (EIS) based measurement leveraged to elicit a proxy 
of self-corrosion of the single material.  Specifically, a cyclic potential of frequency 0.5 Hz and amplitude 
10 mV was applied to the AA7075-T6 IDE, which were separated by an insulating material.  The current 
reported is the RMS current measured in response to the applied signal, which is assumed to be 
proportional to the self-corrosion rate. The measurement span of the single-alloy corrosion sensor is 

between 0.005 μA and 100 μA.  

 

 

Figure 1: Acuity LS sensing device for real-time environment and corrosion measurements1 

 

Physical Device Deployment  

Monitoring devices and 1008 carbon steel witness coupons were deployed at four locations, mounted to 
a rack 5 feet off of the ground facing the main body of water with a 30° tilt from the horizontal (Figure 2).  
Whidbey Island, WA, El Segundo, CA, and Daytona Beach, FL all represented aggressive coastal 
environments at unique locations.  Within Daytona Beach, FL an oceanside (OS) and 0.5 mi (800 m) 
intracoastal (IC) site were both considered, to determine the impact of the distance from the seacoast.  
Note that both Daytona Beach deployment sites were hosted on Battelle’s Florida Materials Research 
Facilities (FMRF).  Triplicate monitoring devices and triplicate mass loss witness coupons were exposed 
for a year, with the latter triplicates being pulled quarterly (3, 6, 9 12 month) (Table 1).  After the respective 
exposure times, data was downloaded from the monitoring devices and the carbon steel coupons were 
grit blasted and weighted to determine the mass loss.  

 

 

1 Acuity LS, https://acuitycorrosion.com/  
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(a) 

 

(b) 

Figure 2: (a) Example outdoor deployment rack and (b) map of four outdoor deployment 
locations  

 

Acquirement of Environmental Data 

NOAA Weather Stations 

Hourly data over the entire year of 2021 was pulled from NOAA weather stations located in three distinct 
locations of interest: Daytona Beach, Florida; El Segundo, California; Whidbey Island, Washington (Table 
1).  Note that one weather station was used to represent both Daytona Beach IC and OS, due to the 
spatial resolution of available weather stations.  Air temperature (T) and dew point were then used to 
directly calculate the hourly-resolved relative humidity (RH) at each location.    

Wind speed and wind direction were used to calculate a total effective wind that may contribute to salt 
deposition on-shore.  In particular, it was assumed that wind directed orthogonal to the coastline would 
be most relevant to on-shore salt deposition when samples are positioned facing the ocean.  Therefore, 
the resulting vector of total effective wind was determined at each location by accounting for the 
orientation of the coastline.  It was assumed that wind speeds less than 4 m/s (9 mph) were not strong 
enough for salt deposition, and were therefore not included in the analysis.    

NOAA Buoy  

Data was also pulled from off-shore buoy stations at half-hour resolution for the year of 2021.  Wave 
height is known to contribute to salt deposition, in combination with the wind speed and direction21.  

NAVAIR Public Release SPR# 2024-0033. Distribution Statement A - Approved for public release; Distribution is unlimited.



 

 

Therefore, wave heights greater than 0.5 m (1.6 ft) were accumulated based on the timestamp into a 
consistent database with the weather station parameters, T, RH, and effective wind.  

Chloride Deposition  

Bi-weekly measurements of chloride deposition via wet candle chloride devices21 were conducted over 
the year of 2021.  Wet candle devices were deployed near Daytona Beach, FL at both IC and OS sites, 
as reported in prior work11,27.  Chloride deposition at El Segundo and Whidbey Island were estimated 
based on a scaling factor.  Specifically, contaminants measurements at all four locations were used to 
calculate scaling factors with Daytona Beach OS acting as the baseline measurement.  It was assumed 
that the contaminants measurements (that is, electrolyte conductance) was linearly related to the chloride 
salt deposition density.  Therefore, the scaling factors could be leveraged to estimate the salt deposition 
at all locations (Table 2).      

 

 

Machine Learning Development 

Random Forest (RF) regression models were developed in python and R, with varying input features to 
predict the AA7075 free corrosion rate.  Note that prior work in literature determined RF models to be the 
least sensitive to small training datasets10.  If larger datasets were available, neural network models could 
be performed.  The output goal of each model was to predict the corrosion, as measured by the real-time 
monitoring devices.  A datasheet was accumulated with all possible features from the monitoring devices 
and NOAA data, as well as the target feature of corrosion, with aligned time-stamps to maintain 
consistency between daily cycles and yearly seasons.  A 75/25 train/test split of the dataset was 
leveraged, independent of time.  Train/test values were plotted, to ensure an even distribution of 
parameters, to mitigate any skewing.  RF parameters were optimized for each model, including the 
number of trees and mtry parameters.  Error metrics of R2 were calculated on the 25% of testing data 
and are reported.   

RESULTS 
 

Verification of Monitoring Device Measurements 

Table 1: Time range of data accumulation from three sources  

Measurement Location Start Date End Date 

Sensing Devices    

 Daytona Beach OS 12/21/2021 12/13/2022 

 Daytona Beach IC 12/21/2021 12/13/2022 

 El Segundo 1/11/2022 11/20/2022 

 Whidbey 4/29/2022 4/21/2023 

1008 Witness Coupons    

 Daytona Beach OS 12/21/2021 4/5; 6/21; 9/21; 12/22 

 Daytona Beach IC 12/21/2021 4/5; 6/21; 9/21; 12/22 

NOAA Weather and Buoy Station    

 Daytona Beach 12/20/2021 12/27/2022 

 El Segundo 12/20/2021 12/27/2022 

 Whidbey 4/29/2022 4/26/2023 
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Corrosion Rate Comparison with Witness Coupons 

Although the 1008 carbon steel witness coupons represented corrosion of a different material than the 
sensing devices, the results could be qualitatively compared to confirm the relative severity of the OS 
and IC environments at Daytona Beach (Figure 3).  The total accumulated charge measurement from 
the free corrosion sensor (that is, the proxy of self-corrosion of AA7075) tracked well through the year 
exposure with the mass-loss witness coupons, highlighting the validity of this approach. In addition, both 
samples and measurement techniques agreed in rank ordering of the environmental severities of the two 
Daytona Beach sites, indicating that the OS location resulted in higher corrosion rates.  

 

 

Figure 3: Carbon steel (1008) mass loss overlaid with co-located real-time monitoring device 
measurements of accumulated charge at two adjacent Florida locations; near to the ocean 

(OS) and intracoastal (IC). 

 

Environment Comparison with NOAA Measurements 

The real-time environmental device measurements consisted of RH, T, and conductance.  The diurnal 
cycle of the first two parameters could be compared directly with NOAA weather station measurements 
(Figure 4).  Initial comparisons indicated the resolution of the real-time monitoring device to track diurnal 
cycles consistent with the NOAA measurements.  The air temperature and RH are indirectly related; 
during the day, air temperature is at its peak and RH at its lowest point, while cooling during the evening 
results in the opposite effect22.  Differences in the magnitudes of the air temperature and RH can directly 
be attributed to the monitoring device measurements being influence by solar irradiance heating and 
black body radiation cooling that do not affect the NOAA weather stations data; therefore, higher 
temperatures and lower RH is expected on the sensing devices during the day and higher RH at night.   
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(a) (b) 

Figure 4: Comparison of real-time environment monitoring device and NOAA measurements 
of (a) air temperature and (b) RH at Daytona Beach, FL. 

 

As the conductance from the real-time monitoring devices represents a salt contaminant measurement, 
it could be compared directly with wet candle chloride measurements.  In addition, the effective wind 
velocity and wave height are known to be contributors to salt deposition21; therefore, an accumulated 
metric of both parameters should also track with accumulation of salt contaminants.  Note that wave, 
wind, and wet candle chloride measurements all assume a total contaminant exposure, neglecting 
wash/rain events that would remove salt from the surface.  In contrast, the conductance measurement is 
real-time and takes into account wash/rain events. 

The salt deposition from the accumulated wave and wind measurements were plotted alongside the OS, 
due to its closer proximity to the ocean (Figure 5).  Relating accumulated wave and wind measurements 
to the IC site would then be scaled based on a “distance to seacoast” metric.  

All OS salt accumulation metrics (wave, wind, wet candle, and conductance) tracked with each other very 
well over the year exposure (Figure 5).  In particular, there was an increase in salt loading around April 
29th 2022 that was captured through the wind, wet candle, and conductance.  The wet candle and 
conductance measurements also both indicated that there was a larger accumulation of salt at the OS 
than IC site, which is consistent with literature that has documented a decay in corrosion as a function of 
the distance to the coast28.   
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Note that the maximum salt deposition through high effective wind and wave measurements do not 
necessarily align in timestamps with the maximum corrosion rate (Figure 6(a)).  That is, although the wind 
and wave are contributing to salt deposition throughout the day, the corrosion generally only occurs at 
night in which there exists high RH and low T, allowing deliquescence to produce an electrolyte over the 
surface.  Under those conditions, the high salt deposition during the day may still produce high corrosion 
rates at night, with some hours offset.  This offset is in contrast to conductance, which also requires an 
electrolyte present for the measurement to be made, thereby resulting in strong alignment of peak values 
with the corrosion rate (Figure 6(b)).  For rapid comparison of the offset, the year-exposure datasets were 
averaged based on hour and location to visualize hourly diurnal trends through all exposed days.  

 

  

(a) (b) 

Figure 6: Averaged daily hours at IC of (a) effective wind and (b) conductance, with free 
corrosion. 

 

To account for this offset, autocorrelations were conducted to relate wind and wave with conductance, 
respectively.  A shift in the average daily hours over the year exposure resulted in good correlation 
between both metrics, with an example of OS indicated in Figure 7.  The optimized shift in effective wind 

 

Figure 5: Comparison of real-time monitoring device measurements (conductance) with 
NOAA weather (wind and wave) and wet candle chloride measurements at Daytona Beach, FL. 
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with conductance was applied to the wave height, to maintain consistency in timestamps between the 
wind and wave parameters. This process was followed for each specific location prior to merging the 
datasets.  A detailed analysis revealed that for a given location, the optimized shifting offset depended 
on the season, and corresponding month of the year.  Offsets applied to the entire year of data lost this 
resolution.  The autocorrelation and optimized shifting was automated to occur prior to any modeling of 
the data, and was applied to the hourly data.   

 

 

(a) 

  

(b) (c) 

Figure 7: (a) 10-hour lagged NOAA wind to correlate with OS monitoring device conductance 
over averaged daily hours, and  (b) correlations with effective wind after shifting; (c) 

correlations with wave height after shifting. 

 

A summary of the annual averaged environmental metrics determined through NOAA, wet candle, and 
the sensing device was accumulated (Table 2).  Although the annual averages provide a condensed 
table to be easily compared between the different data sources and locations, detailed real-time data with 
consistent time stamps was accumulated to be used as input features for the model.  

 

Table 2: Annual average data accumulation from three data sources for all locations of interest 

Location NOAA Monitoring Device 
Wet 

Candle 

 
Avg. 

RH (%) 
Avg. 

T (°C) 
Eff. Wind 

(m) 

Wave 
Height 
(M⋅s) 

Avg. 
RH (%) 

Avg. 
T (°C) 

Cond. 
(C/V/a) 

Annual 
Cl- dep. 

(mg/m2⋅d) 

Daytona Beach 
(OS), FL 

74.8 22.4 31614 0.713 75.2 26.0 24228 108.4 
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Daytona Beach 
(IC), FL 

74.8 22.4 31614 0.713 73.7 27.0 5577 43.8 

El Segundo, CA 66.7 17.7 59874 1.004 65.5 23.8 45362 207.1* 

Whidbey 
Island, WA 

89.9 9.4 53414 0.395 79.7 12.5 19136 87.4* 

*Estimated values 

 

Machine Learning Models 

After accumulating the environmental and corrosion database at the four locations of interest, four ML 
models were developed based on a tiered approach of input features ranging from less granular to more 
local and detailed, as summarized in Table 3.  Initially, entire datasets of hourly measurements were 
applied, with a total of 35,119 observations.  It was determined that the noise throughout the year was 
contributing to poor model performance.  Therefore, two optimizations were conducted: 1) features were 
smoothed at a 3 to 4 hour resolution moving average, and 2) a single month of data was selected.  The 
moving average was plotted against the raw data to confirm that the resolution of the parameters was 
not being removed.  A single month was chosen to optimize the autocorrelation with wind and 
conductance.  

Note that throughout all models, three main trends of the feature inputs followed: a temperature 
parameter, a RH parameter, and a salt accumulation parameter.  Although RH is calculated through the 
temperature and absolute humidity, it provides valuable information on the formation of the electrolyte 
that is not present through temperature alone.  Initial models with input parameters of either RH or 
temperature alone resulted in poor performance.  During future development, these parameters could be 
accumulated into a single new parameter.  In addition, the time of wetness, taking into account the time 
and duration of exposure to RH, has been found to be valuable and will be incorporated in future modeling 
efforts. 

 

1st ML Model: Static Salt Assumption 

The first model was trained on data with a static salt assumption for each location, based on the wet 
candle measurements from Daytona Beach.  A static salt model is a close approximation of the 
environmental severity prescribed by ISO 9223, which uses yearly averages of environmental parameters 
such as a time of wetness (ToW), and chloride and sulfur dioxide deposition rates.  A distance to seacoast 
metric was used to account for the differences between OS and IC Daytona Beach sites.  All temperature 
and RH values were from the NOAA weather stations, representing the general environment without local 
measurements.  Despite these features, the model performed poorly and was not able to accurately 
capture the corrosion rate (Table 3).  

 

2nd ML Model: Dynamic Salt through Wind and Wave Data 

To build on the prior model, dynamic salt accumulation was taken into account through the effective wind 
and wave measurements.  The shifted wind and wave parameters were leveraged, to account for the 
early salt deposition.  The temperature and RH parameters again were from the NOAA weather stations.  
Corrosion predictions largely increased in performance when leveraging a dynamic salt parameter, 
highlighting influence of capturing real-time salt deposition in contrast to annual averages (Table 3).   

 

3rd ML Model: Local Salt Accumulation  

Building again on the prior model, dynamic salt accumulation from the more local measurement of the 
monitoring device was taken into account.  Specifically, the local conductance measurement at all 
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locations was leveraged, eliminating the need for a distance to seacoast feature.  In addition, the 
conductance was seen to track well with the corrosion rate as a function of time, and therefore required 
no autocorrelation or offset was required (Figure 6b).  The temperature and RH parameters were from 
the NOAA weather stations, consistent with the first two models.  The performance of the model 
decreased slightly when incorporating this feature with NOAA RH and T (Table 3).  

 

4th ML Model: Local Environment Measurements  

The last model leveraged all of the monitoring device measurements for the most local environment.  As 
seen previously in Figure 4, the sensing device measurements track well with the diurnal cycle as 
measured by NOAA, with different maxima/minima that may be more relevant to actual structural 
materials.  Incorporating these features with the conductance measurements resulted in the best 
performing model (Table 3 and Figure 8).  Integrating the predicted corrosion rates, the total cumulative 
corrosion could be compared (Figure 9).  The model predictions slightly underestimate the actual values, 
with a 5.2% error of the final cumulative value.   

 

  

 

Figure 8: Fourth ML prediction of corrosion rate as a function of measured (actual) corrosion 
rate, leveraging the Acuity RH, T, and conductance as input parameters.  
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Figure 9: Cumulative corrosion comparison with actual and predicted, as through the fourth 
ML model, leveraging the Acuity RH, T, and conductance as input parameters.  

 

 

 

DISCUSSION 
 

Corrosion Prediction to Enhance Local Component Maintenance  

Based on the tiered input features investigated, the best performing models occurred when dynamic salt 
accumulation or local environment measurements were incorporated.  This result highlights the value of 
using dynamic and local environments in computational tools, as could be measured via facility/on-asset 
monitoring devices, rather than relying directly on annual averages.  In addition, the good performance 
of the 2nd model highlights that NOAA effective wind and buoy wave height provide a good representation 
of dynamic salt accumulation, when local measurement devices are not available.   

Table 3: Overview of four models developed in this work, leveraging data in month of November. 

Model 
# 

Input Features 
Testing 

Error 

 NOAA Monitoring Device Wet Candle  R2 

 
RH 
(%) 

T 
(°C) 

Eff. 
Wind 
(m) 

Wave 
Height 
(M⋅s) 

RH 
(%) 

T 
(°C) 

Cond. 
(C/V/a) 

Annual Cl- 
dep. 

(mg/m2⋅d) 

Distance 
to coast 

[m] 

Pred. 
Corrosion  

1 X X      X X 0.64 

2 X X X X     X 0.72 

3 X X     X   0.68 

4     X X X   0.81 

NAVAIR Public Release SPR# 2024-0033. Distribution Statement A - Approved for public release; Distribution is unlimited.



 

 

Once a model is optimized and trained on the features above, it can  be used in tandem with corrosion 
maintenance manhour (MMH) models to help enhance long-term maintenance planning (Figure 10).  In 
particular, environmental parameters influence the corrosion rate and resulting corrosion-related MMH; 
understanding these relationships can lead to forecasted severity and corrosion-related MMH for a given 
asset, thereby enabling informed maintenance scheduled intervals to enhance cost savings and asset 
availability.  

 

Figure 10: ML prediction of corrosion maintenance manhours (MMH) of various aircraft, 
through input features of environmental severity index (ESI), aircraft location, hours flown, 

and days flown.   

 

CONCLUSIONS 

• Real-time monitoring devices and NOAA measurements were leveraged to train and test 
machine learning models to predict corrosion rate 

• A tiered model approach was developed to determine the relative feature importance of specific 
environmental parameters 

• Local environment measurements provided the best model approximation, in contrast to static 
annual average values 

• Effective wind and wave height, scaled by a distance-to-seacoast factor, were determined to 
represent the delivery mechanisms of salt deposits and accumulation, thereby increasing model 
performance when local measurements are not available 
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