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Atmospheric Corrosion Y
P o

Atmospheric corrosion is known to occur...

Atmospheric
exposure

..but, it is difficult to quantify main driving
environmental factors

YA

Understanding atmospheric corrosion rates
under different climates can help characterize
environmental severity & material severity

Physical deployments
generate valuable data,
but are discrete

Computational modeling can
be used to complement
existing databases

* Yoon, Y., J.D. Angel, and D.C. Hansen, Corrosion 72 (2016): pp. 1424-1432.
+ “ISO 9223 Corrosion of Metals and Alloys - Corrosivity of Atmospheres - Classification, Determination and Estimation,” Reference number ISO (2012).
+ Silver, N.A,, and W. Gaebel, “Facilities Environmental Severity Classification Study Final Report” (2017), www.corrdefense.org.

+ Kopitzke, S., “Characterizing Environmental Severity for Naval Air Stations” (2023), AMPP Corrosion Conference



Multi-Tiered Model, Robust to Available Data

Need robust model, capable of predicting corrosion based on available data...

At the minimum, environmental parameters
capturing the wetness and saltiness are necessary

“Wetnhess” Parameters “Saltiness” Parameters

« Relative humidity (RH) « Annual salt accumulation
« Air temperature « Wind flux, direction
* Time of wetness  Wave height, frequency
Local measurements and regional . Solution conductance
weather stations

« Sanders, C. E., & Santucci, R. J. (2022). Experimental Design Considerations for Assessing Atmospheric Corrosion in a Marine Environment: Surrogate C1010 Steel. Corrosion and
Materials Degradation, 4(1), 1-17. https://doi.org/10.3390/cmd4010001

* Yan, L., Diao, Y., Lang, Z., & Gao, K. (2020). Corrosion rate prediction and influencing factors evaluation of low-alloy steels in marine atmosphere using machine learning approach.
Science and Technology of Advanced Materials, 27(1), 359-370. https://doi.org/10.1080/14686996.2020.1746196

* Pei, Z,Zhang, D., Zhi, Y., Yang, T., Jin, L., Fu, D., Cheng, X., Terryn, H. A., Mol, J. M. C., & Li, X. (2020). Towards understanding and prediction of atmospheric corrosion of an Fe/Cu
corrosion sensor via machine learning. Corrosion Science, 170. https://doi.org/10.1016/j.corsci.2020.108697



Multi-Tiered Model, Robust to Available Data

Need robust model, capable of predicting corrosion based on available data...

At the minimum, environmental parameters
capturing the wetness and saltiness are necessary

“Wetnhess” Parameters “Saltiness” Parameters

« Relative humidity (RH) « Annual salt accumulation
« Air temperature « Wind flux, direction
* Time of wetness  Wave height, frequency
Local measurements and regional . Solution conductance
weather stations

O

Additional exposure considerations: sheltering,
rainfall, exposure angle, sample geometry, etc.
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Data Acquisition of Environment and Corrosivity

Weather and buoy stations

« Large database of historic
measurements

« Well documented, over a
range of global sites
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Agnew, L. (2023). Atmospheric Environment Severity
Monitoring for Corrosion Management. AMPP C2023-19464

Real-time monitoring devices

« Capturing real-time corrosion with local environment
monitoring

« Can differentiate adjacent conditions
« Durable for outdoor deployments in harsh conditions
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Database for Modeling Uses Four Distributed Sites

— Whidbey Island, WA ’ Environment and Corrosivity Data Streams
’/gaciﬁc o Y ~ . Ogtdoor deployments of sensing devices and
cean Island 4 ®
V- N 1 Segqundo, CA witness coupons
Salish Sea y < | « Wet chloride candle measurements
- e 235 i X « Weather station and buoy environments (NOAA)
T g “ — Atlantic Ocean
El Segundov 4 i l S TRER v §a§telleos
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Ocean 72
[— @
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Friedersdorf, F., & Agnew, L. (2023). Use of Environment and Corrosivity Monitoring to Characterize Base and Airframe Severity. NATO STO-MP-AVT-373.
« Agnew, L., Avance, V., Clark, B., & Friedersdorf, F. (2023). Atmospheric Environment Severity Monitoring for Corrosion Management. AMPP .
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Database for Modeling Uses Four Distributed Sites
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 Wet chloride candle measurements
« Weather station and buoy environments (NOAA)

Data will be used to train/test a model to predict
corrosion from environmental parameters
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= Data from four sites represents a distribution
; of coastal environments, varying in:

« Corrosion severity

Friedersdorf, F., & Agnew, L. (2023). Use of Environment and Corrosivity Monitoring to Characteriz
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Quantifying Tiered Salt Accumulation Parameters

“Saltiness” Parameters

« Annual salt accumulation Combination of wet candle
. . . measurements and severity rankings
« Wind flux, direction y 9

- Wave height, frequency
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Corrosion Rate
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Agnew, L., Marshall, R., Avance, V., Clark, B., & Friedersdorf, F. (2024, January). Environment Severity Classification Development for
Aerospace-Relevant Materials. Materials Performance (MP) Corrosion Prevention and Control Worldwide, 56—60. www.densona.com



Quantifying Tiered Salt Accumulation Parameters

“Saltiness” Parameters

* Annual salt accumulation
« Wind flux, direction i

e Calculation of effective wind

v

* Measured wave height

- Wave height, frequency |
« Solution conductance

Averaged Diurnal IC Data over the Year

effective wind

Effective wind
normal to the
coastline [m/s]
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WE
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Direction Wind

0 IS 1‘0 1I5 2I0
« time [hours] > Effective wind occurs on a diurnal cycle

Averaged diurnal cycle over the year




Quantifying Tiered Salt Accumulation Parameters

“Saltiness” Parameters

Annual salt accumulation
Wind flux, direction

Wave height, frequency
Solution conductance

Diurnal solution conductance trends are

strongly correlated with corrosion rates...
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Quantifying Tiered Salt Accumulation Parameters

“Saltiness” Parameters

« Annual salt accumulation
« Wind flux, direction

- Wave height, frequency
« Solution conductance

Diurnal solution conductance trends are
strongly correlated with corrosion rates...

..and RH

Indicates that conductance is a strong
representation of contaminants on the surface
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Delayed Corrosion Response from Salt Deposition
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350
15:00

300+ °

250}

200}

150F

100

50

0

Averaged Diurnal IC Data over the Year

Local

\

Effective
wind

Conductance

time [hours] UTC

Exposed Material Surface

Sea-breeze winds and wave height
contribute to salt deposition

\
:><\h\\\\__,_,// \\——():ji'
0 g ll(] 1I5 26

—41.5

conductance
effective wind
wave

—

[m

/ Wave Height

[m/s]

WE




Delayed Corrosion Response from Salt Deposition

Conductance [uSs]

350F

300

250

200

150F

100

50

0

Lveraged Diurnal IC Data over the Year

15:00
Local

\

Effective
wind

Conductance

time [hours] UTC

Exposed Material Surface

Sea-breeze winds and wave height
contribute to salt deposition

\
0 é 1‘0 1‘5 2‘0

41.5

LAveraged Diurnal IC Data over the Year

—41.5

Effective
wind

time [hours] UTC

Exposed Material Surface

Overnight RH results in deliquescence
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Delayed Corrosion Response from Salt Deposition
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Shifting Effective Wind Increases Correlations

Before shifting After shifting

Autocorrelation of Battelle 0S with Wind and Conductance

0.25F [

0.2

Conductance
Conductance 0.25 0.05 0.23 0.27

Wave Height

0.15F

Wave Height

correlation with conductance

0.1

Eff. Wind

E w0 5 20 Eff. Wind
Lag of effective wind [hrs]
Shifting the wind increases the correlation with

A correlation matrix run with ) :
conductance, and correspondingly, corrosion

each “lagged” hour of the wind
determined optimum shifting



Shifting 1s Dependent on Months/Seasons

correlation with conductance

0.5

0.4

0.3

0.2

0.1

-0.1

-0.2

Autocorrelation of Battelle 0S5 with Wind and Conductance

March

Raw Hourly Correlations

December

September

10 15

lag of effective wind

20

The shifting is dependent on the
month/season

Therefore, a single-month of data will be used in
the model going forward




Random Forest Model Constructed to Predict Corrosion Rates

75% of training data

Optimize RF parameters

Database of
environment and
corrosivity parameters
(single month)

25% of testing data

Tiered wetness and
saltiness parameters

AA7075 Corrosion [UuA]

1.6

1.4

1.2

0.84

0.4+

0.24

1 1 1 1
20 40 60 80
RH [%]

T
100

Training/testing split was well distributed
among the AA7075 free corrosion rate and RH

® test
O  train



Tiered Predictions of Free Corrosion on Testing Data

Environmental Input Parameters

R? of AA7075

Tiered Input Features Free Corrosion

' Sensor
Weather Station Prediction RMSE [uA]
Temperature Temperature
RH RH

Distance to seacoast Conductance
Effective wind

Wave height Reminder — input features are location
independent, as the model was trained/tested
Wet Candle on a dataset with four different locations
Annual salt
accumulation Corrosion predictions are at an hourly resolution

Root Mean Squared Error (RMSE)



Tiered Predictions of Free Corrosion on Testing Data

Environmental Input Parameters

Weather Station Sensor
Temperature Temperature
RH RH

Distance to seacoast Conductance
Effective wind
Wave height

Wet Candle

Annual salt
accumulation

R? of AA7075
Free Corrosion
Prediction RMSE [uA]

NOAAT, RH, and static salt - 0.52

Tiered Input Features




Tiered Predictions of Free Corrosion on Testing Data

Environmental Input Parameters

Weather Station Sensor
Temperature Temperature
RH RH

Distance to seacoast Conductance
Effective wind
Wave height

Wet Candle

Annual salt
accumulation

R? of AA7075
Free Corrosion
Prediction RMSE [uA]

NOAAT, RH, and static salt - 0.52

NOAAT, RH, shifted wave, shifted
wind, distance to the coast She 0.46

Tiered Input Features




Tiered Predictions of Free Corrosion on Testing Data

Environmental Input Parameters

Weather Station Sensor
Temperature Temperature
RH RH

Distance to seacoast Conductance
Effective wind
Wave height

Wet Candle

Annual salt
accumulation

R? of AA7075
Free Corrosion
Prediction RMSE [uA]

NOAAT, RH, and static salt - 0.52

NOAAT, RH, shifted wave, shifted
wind, distance to the coast She 0.46

NOAA T, RH, and conductance 0.69 0.50

Tiered Input Features




Tiered Predictions of Free Corrosion on Testing Data

Environmental Input Parameters

Weather Station

Temperature
RH
Distance to seacoast
Effective wind
Wave height

Wet Candle

Annual salt
accumulation

Best performing model includes = gz o AA7075

Sensor local measurements Free Corrosion

Prediction RMSE [uA]

Temperature NOAA T, RH, and static salt - 0.52

RH NOAAT, RH, shifted wave, shifted 0.73 0.46
Conductance wind, distance to the coast ' '
NOAA T, RH, and conductance 0.69 0.50

Acuity T, RH, and conductance - 0.40

Shifted wind and wave parameters are demonstrated as effective
proxies for salt deposition, while static annual values are less effective




Machine Learning Prediction of Corrosion from
Environmental Parameters

Tnput: Acuity Air T, Acuity RH, Conductance Input: Acuity Air T, Acuity ERH, Conductance

Output: Free AAT075 Corrosion [uA] Output: Total Free AAT0O75 Corrosion [C]
—_ T —
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Over the month, the corrosion rates are slightly
underpredicted, but track well with actual values



Practical Implications of Predictions

Two main uses,
in the context of aircraft maintenance,
for corrosion predictions from weather parameters

Predicted Corrosion MMH with inputs of ESI,

Using the model to track aircraft Location, Hrs Flown, and Days Flown
severity, through different locations deal 4" e
RZ =087 N ® .
1000 - :
QURZ=10 =
% 800 - f— .,4'" Model
= & T prediction
o "
600 - :
% .-_.i .._. °
‘8 o N * ® AircraftA
5 w0 " . ® e e  Aircraftl
‘;&_’ o‘\". » o  Aircraft)
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Actual Corr MMH

Strong prediction of corrosion maintenance manhours (MMH) based on tracked environmental severity




Translating Model to New Locations for Asset Tracking

Two main uses,

in the context of aircraft maintenance, /% error, on the

for corrosion predictions from weather parameters last datapoint

Input: NOAA Rir T, NOARZA RH, Wind, Wave, D2C
Output: Total Free AAT075 Corrosion [C]

L

[
[=]

Using the model to track aircraft
severity, through different locations

[C]
»

Actual values

)
i _E 1.2 AW
2 2
0 104l Predicted values
T o
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i £
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Practical Implications of Predictions

Two main uses,
in the context of aircraft maintenance,
for corrosion predictions from weather parameters

Using the model to track aircraft Expanding to different timeframes

severity, through different locations (forecasting)

Input: Acuity Air T, Acuity RH, Conductance
Output: Total Free ARA7075 Corrosion [C] /
R2 = 0.81, MAE = 0.24 MAPE = 1.69

n) [C]

o
& [

o
@

Total Anodic Charge
(Cumulative ART7075 Corrosio
°

=)
N

Corrosivity

=)

L L L L
5 10 15 20

time [days]

Can demonstrate this by testing the established model
on a completely new month...




Forecasting Example

Input: Acuity Air T, Acuity RH, Conductance Input: Acuity Air T, Acuity RH, Conductance
| Output: Free AA7075 Corrosion [uA] Output: Total Free AA7075 Corrosion [C]
Data from a single month, fested on oct 3 Tested on Oct
at a single location _ !
450
2 Actual values s
S at Predicted — :]_‘t%r § Predicted values
P values & o N
8 00
=L \ L
g 1 o e 1 AN
0 1 H 0 o Actual values
iy / | L g
L] 21 '
- " T‘U g o
: | i : i‘ 9 S Aost 11% error, on the
b N ' il =4 last datapoint
A il . 1} - _/J_/
! L | ﬁ: 2 -

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Days TLime [days]

Despite a new month (new values), corrosion rate and cumulative
corrosion track with actual values, demonstrating initial robustness



Conclusions

« Real-time monitoring devices and NOAA measurements were successfully leveraged to
train and test machine learning models to predict hourly-resolved corrosion rate

« Atiered model approach was developed to determine the relative feature importance of
specific environmental parameters

» Local environment measurements provided the best model approximation, in contrast to
static annual average values

« Effective wind and wave height, when temporally scaled, represented the delivery
mechanisms of salt deposits and accumulation

« The model was demonstrated to be translated to new locations and to new time frames,
for aircraft tracking and forecasting applications, respectively

* Next Steps
« Apply to galvanic corrosion, with more comprehensive dataset
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Real-time monitoring devices and NOAA measurements were successfully
leveraged to train and test machine learning models to predict hourly-resolved
corrosion rate

A tiered model approach was developed to determine the relative feature
importance of specific environmental parameters

Local environment measurements provided the best model approximation, in
contrast to static annual average values

Effective wind and wave height, when temporally scaled, represented the delivery
mechanisms of salt deposits and accumulation

The model was demonstrated to be translated to new locations and to new time
frames, for aircraft tracking and forecasting applications, respectively

Next Steps
« Apply to galvanic corrosion, with more comprehensive dataset
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