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Atmospheric Corrosion

Atmospheric corrosion is known to occur...

Understanding atmospheric corrosion rates 
under different climates can help characterize 

environmental severity & material severity

…but, it is difficult to quantify main driving 
environmental factors

Atmospheric 
exposure

• Yoon, Y., J.D. Angel, and D.C. Hansen, Corrosion 72 (2016): pp. 1424–1432.
• “ISO 9223 Corrosion of Metals and Alloys - Corrosivity of Atmospheres - Classification, Determination and Estimation,” Reference number ISO (2012).
• Silver, N.A., and W. Gaebel, “Facilities Environmental Severity Classification Study Final Report” (2017), www.corrdefense.org.
• Kopitzke, S., “Characterizing Environmental Severity for Naval Air Stations” (2023), AMPP Corrosion Conference

Computational modeling can 
be used to complement 

existing databases

Physical deployments 
generate valuable data, 

but are discrete



• Sanders, C. E., & Santucci, R. J. (2022). Experimental Design Considerations for Assessing Atmospheric Corrosion in a Marine Environment: Surrogate C1010 Steel. Corrosion and 
Materials Degradation, 4(1), 1–17. https://doi.org/10.3390/cmd4010001

• Yan, L., Diao, Y., Lang, Z., & Gao, K. (2020). Corrosion rate prediction and influencing factors evaluation of low-alloy steels in marine atmosphere using machine learning approach. 
Science and Technology of Advanced Materials, 21(1), 359–370. https://doi.org/10.1080/14686996.2020.1746196

• Pei, Z., Zhang, D., Zhi, Y., Yang, T., Jin, L., Fu, D., Cheng, X., Terryn, H. A., Mol, J. M. C., & Li, X. (2020). Towards understanding and prediction of atmospheric corrosion of an Fe/Cu 
corrosion sensor via machine learning. Corrosion Science, 170. https://doi.org/10.1016/j.corsci.2020.108697
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Multi-Tiered Model, Robust to Available Data

Need robust model, capable of predicting corrosion based on available data…

At the minimum, environmental parameters 
capturing the wetness and saltiness are necessary

“Wetness” Parameters “Saltiness” Parameters

• Relative humidity (RH)

• Air temperature

• Time of wetness

Local measurements and regional 
weather stations

• Annual salt accumulation

• Wind flux, direction

• Wave height, frequency

• Solution conductance



• Sanders, C. E., & Santucci, R. J. (2022). Experimental Design Considerations for Assessing Atmospheric Corrosion in a Marine Environment: Surrogate C1010 Steel. Corrosion and 
Materials Degradation, 4(1), 1–17. https://doi.org/10.3390/cmd4010001
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Multi-Tiered Model, Robust to Available Data

Need robust model, capable of predicting corrosion based on available data…

At the minimum, environmental parameters 
capturing the wetness and saltiness are necessary

“Wetness” Parameters “Saltiness” Parameters

• Relative humidity (RH)

• Air temperature

• Time of wetness

Local measurements and regional 
weather stations

• Annual salt accumulation

• Wind flux, direction

• Wave height, frequency

• Solution conductance

Additional exposure considerations: sheltering, 
rainfall, exposure angle, sample geometry, etc.
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Data Acquisition of Environment and Corrosivity

Temperature 
Relative Humidity

Contaminants

Single Material 
Corrosion

Mixed Material 
Corrosion

Real-time monitoring devices

• Capturing real-time corrosion with local environment 
monitoring

• Can differentiate adjacent conditions

• Durable for outdoor deployments in harsh conditions

Agnew, L. (2023). Atmospheric Environment Severity 
Monitoring for Corrosion Management. AMPP C2023-19464 

Weather and buoy stations

• Large database of historic 
measurements

• Well documented, over a 
range of global sites



Database for Modeling Uses Four Distributed Sites

• Friedersdorf, F., & Agnew, L. (2023). Use of Environment and Corrosivity Monitoring to Characterize Base and Airframe Severity. NATO STO-MP-AVT-373.
• Agnew, L., Avance, V., Clark, B., & Friedersdorf, F. (2023). Atmospheric Environment Severity Monitoring for Corrosion Management. AMPP .
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Environment and Corrosivity Data Streams

• Outdoor deployments of sensing devices and 
witness coupons

• Wet chloride candle measurements

• Weather station and buoy environments (NOAA)



Database for Modeling Uses Four Distributed Sites

• Friedersdorf, F., & Agnew, L. (2023). Use of Environment and Corrosivity Monitoring to Characterize Base and Airframe Severity. NATO STO-MP-AVT-373.
• Agnew, L., Avance, V., Clark, B., & Friedersdorf, F. (2023). Atmospheric Environment Severity Monitoring for Corrosion Management. AMPP .
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Exposure Site

Data from four sites represents a distribution 
of coastal environments, varying in: 

• Corrosion severity

• Salt deposition

• Time of wetness (TOW)
7

Data will be used to train/test a model to predict 
corrosion from environmental parameters

Environment and Corrosivity Data Streams

• Outdoor deployments of sensing devices and 
witness coupons

• Wet chloride candle measurements

• Weather station and buoy environments (NOAA)
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Quantifying Tiered Salt Accumulation Parameters

“Saltiness” Parameters

• Annual salt accumulation

• Wind flux, direction

• Wave height, frequency

• Solution conductance

Combination of wet candle 
measurements and severity rankings  

Agnew, L., Marshall, R., Avance, V., Clark, B., & Friedersdorf, F. (2024, January). Environment Severity Classification Development for 
Aerospace-Relevant Materials. Materials Performance (MP) Corrosion Prevention and Control Worldwide, 56–60. www.densona.com



• Annual salt accumulation

• Wind flux, direction

• Wave height, frequency

• Solution conductance
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Quantifying Tiered Salt Accumulation Parameters

“Saltiness” Parameters

• Calculation of effective wind

• Measured wave height

Effective wind 
normal to the 

coastline [m/s]

Effective wind occurs on a diurnal cycletime [hours]

Averaged diurnal cycle over the year
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Quantifying Tiered Salt Accumulation Parameters

“Saltiness” Parameters
Measurement from real-time 

sensing device

Diurnal solution conductance trends are 
strongly correlated with corrosion rates…

Free corrosion

Conductance

• Annual salt accumulation

• Wind flux, direction

• Wave height, frequency

• Solution conductance

time [hours]
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Quantifying Tiered Salt Accumulation Parameters

“Saltiness” Parameters
Measurement from real-time 

sensing device

Diurnal solution conductance trends are 
strongly correlated with corrosion rates…

Indicates that conductance is a strong 
representation of contaminants on the surface

Free corrosion

Conductance

… and RH

RH

• Annual salt accumulation

• Wind flux, direction

• Wave height, frequency

• Solution conductance

time [hours]



Delayed Corrosion Response from Salt Deposition

15:00
Local

Exposed Material Surface

Conductance

Effective 
wind

Sea-breeze winds and wave height 
contribute to salt deposition

time [hours] UTC



Delayed Corrosion Response from Salt Deposition

Exposed Material Surface Exposed Material Surface

15:00
Local

1:00
Local

Conductance

Effective 
wind

Conductance

Effective 
wind

Sea-breeze winds and wave height 
contribute to salt deposition

time [hours] UTC time [hours] UTC

• Overnight RH results in deliquescence 
of salt into electrolyte droplets

• No additional salt deposition



Exposed Material Surface Exposed Material Surface

14

Delayed Corrosion Response from Salt Deposition

Exposed Material Surface

Sea-breeze winds and wave height 
contribute to salt deposition

Sufficient electrolyte coverage enables 
electrochemical corrosion reactions 

15:00
Local

1:00
Local

6:00
Local

Effective 
wind

Conductance

Effective 
wind

Conductance

Effective 
wind

Conductance

time [hours] UTCtime [hours] UTC time [hours] UTC

• Overnight RH results in deliquescence 
of salt into electrolyte droplets

• No additional salt deposition
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Shifting Effective Wind Increases Correlations

Wave Height

Conductance

Eff. Wind

Before shifting

Wave Height

Conductance

Eff. Wind

After shifting

Shifting the wind increases the correlation with 
conductance, and correspondingly, corrosion

A correlation matrix run with 
each “lagged” hour of the wind 
determined optimum shifting

Lag of effective wind [hrs]
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Shifting is Dependent on Months/Seasons

The shifting is dependent on the 
month/season

March

June

December

September

Therefore, a single-month of data will be used in 
the model going forward



Training/testing split was well distributed 
among the AA7075 free corrosion rate and RH
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Random Forest Model Constructed to Predict Corrosion Rates

Database of 
environment and 

corrosivity parameters 
(single month) 

Tiered wetness and 
saltiness parameters

25% of testing data

75% of training data

Optimize RF parameters
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Tiered Predictions of Free Corrosion on Testing Data

SensorWeather Station

Environmental Input Parameters

Temperature

RH

Distance to seacoast

Effective wind

Wave height

Temperature

RH

Conductance

Wet Candle

Annual salt 
accumulation

Reminder – input features are location 
independent, as the model was trained/tested 

on a dataset with four different locations

Corrosion predictions are at an hourly resolution

Tiered Input Features
R2 of AA7075 

Free Corrosion 
Prediction RMSE [uA]

Root Mean Squared Error (RMSE)
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Tiered Predictions of Free Corrosion on Testing Data

SensorWeather Station

Environmental Input Parameters

Temperature

RH

Distance to seacoast

Effective wind

Wave height

Temperature

RH

Conductance

Wet Candle

Annual salt 
accumulation

NOAA T, RH, and static salt 0.65 0.52

NOAA T, RH, shifted wave, shifted 
wind, distance to the coast

0.73 0.46

NOAA T, RH, and conductance 0.69 0.50

Acuity T, RH, and conductance 0.80 0.4

Tiered Input Features
R2 of AA7075 

Free Corrosion 
Prediction RMSE [uA]
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Tiered Predictions of Free Corrosion on Testing Data

SensorWeather Station

Environmental Input Parameters

Temperature

RH

Distance to seacoast

Effective wind

Wave height

Temperature

RH

Conductance

Wet Candle

Annual salt 
accumulation

NOAA T, RH, and static salt 0.65 0.52

NOAA T, RH, shifted wave, shifted 
wind, distance to the coast

0.73 0.46

NOAA T, RH, and conductance 0.69 0.50

Acuity T, RH, and conductance 0.80 0.4

Tiered Input Features
R2 of AA7075 

Free Corrosion 
Prediction RMSE [uA]
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Tiered Predictions of Free Corrosion on Testing Data

SensorWeather Station

Environmental Input Parameters

Temperature

RH

Distance to seacoast

Effective wind

Wave height

Temperature

RH

Conductance

Wet Candle

Annual salt 
accumulation

NOAA T, RH, and static salt 0.65 0.52

NOAA T, RH, shifted wave, shifted 
wind, distance to the coast

0.73 0.46

NOAA T, RH, and conductance 0.69 0.50

Acuity T, RH, and conductance 0.80 0.4

Tiered Input Features
R2 of AA7075 

Free Corrosion 
Prediction RMSE [uA]
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Tiered Predictions of Free Corrosion on Testing Data

SensorWeather Station

Environmental Input Parameters

Temperature

RH

Distance to seacoast

Effective wind

Wave height

Temperature

RH

Conductance

Wet Candle

Annual salt 
accumulation

Shifted wind and wave parameters are demonstrated as effective 
proxies for salt deposition, while static annual values are less effective

NOAA T, RH, and static salt 0.65 0.52

NOAA T, RH, shifted wave, shifted 
wind, distance to the coast

0.73 0.46

NOAA T, RH, and conductance 0.69 0.50

Acuity T, RH, and conductance 0.80 0.40

Tiered Input Features
R2 of AA7075 

Free Corrosion 
Prediction RMSE [uA]

Best performing model includes 
local measurements
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Machine Learning Prediction of Corrosion from 
Environmental Parameters

Over the month, the corrosion rates are slightly 
underpredicted, but track well with actual values

5% error, on the 
last datapoint

𝑹𝟐 = 𝟖𝟎%

𝑹𝑴𝑺𝑬 = 𝟎. 𝟒𝟎 𝝁𝑨 

𝑹𝟐 = 𝟖𝟎%

𝑹𝑴𝑺𝑬 = 𝟎. 𝟒𝟎 𝝁𝑨 

Actual values

Predicted values



Strong prediction of corrosion maintenance manhours (MMH) based on tracked environmental severity 

Practical Implications of Predictions

Using the model to track aircraft 
severity, through different locations

Two main uses, 

in the context of aircraft maintenance, 

for corrosion predictions from weather parameters

24



Translating Model to New Locations for Asset Tracking

Using the model to track aircraft 
severity, through different locations

Two main uses, 

in the context of aircraft maintenance, 

for corrosion predictions from weather parameters

25

Trained on data from

• Battelle, Oceanside

• El Segundo

• Whidbey Island

Tested on data from

• Battelle, Intercoastal

7% error, on the 
last datapoint

Actual values

Predicted values



Practical Implications of Predictions

Using the model to track aircraft 
severity, through different locations

Two main uses, 

in the context of aircraft maintenance, 

for corrosion predictions from weather parameters

Expanding to different timeframes 
(forecasting)

time

C
o

rr
o

s
iv

it
y 

Can demonstrate this by testing the established model 
on a completely new month… 26
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Forecasting Example

Despite a new month (new values), corrosion rate and cumulative 
corrosion track with actual values, demonstrating initial robustness

Data from a single month, 
at a single location

Actual values

Actual values

Predicted valuesPredicted 
values

11% error, on the 
last datapoint
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Conclusions

• Real-time monitoring devices and NOAA measurements were successfully leveraged to 
train and test machine learning models to predict hourly-resolved corrosion rate

• A tiered model approach was developed to determine the relative feature importance of 
specific environmental parameters

• Local environment measurements provided the best model approximation, in contrast to 
static annual average values

• Effective wind and wave height, when temporally scaled, represented the delivery 
mechanisms of salt deposits and accumulation

• The model was demonstrated to be translated to new locations and to new time frames, 
for aircraft tracking and forecasting applications, respectively

• Next Steps

• Apply to galvanic corrosion, with more comprehensive dataset
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Questions? 

• Real-time monitoring devices and NOAA measurements were successfully 
leveraged to train and test machine learning models to predict hourly-resolved 
corrosion rate

• A tiered model approach was developed to determine the relative feature 
importance of specific environmental parameters

• Local environment measurements provided the best model approximation, in 
contrast to static annual average values

• Effective wind and wave height, when temporally scaled, represented the delivery 
mechanisms of salt deposits and accumulation

• The model was demonstrated to be translated to new locations and to new time 
frames, for aircraft tracking and forecasting applications, respectively

• Next Steps

• Apply to galvanic corrosion, with more comprehensive dataset
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